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Abstract: Magnifying micro motion of videos that are undetectable by humans has recently been popular in many 

applications. This is due to its impact in numerous applications. In this paper, we explore this technique in 3D facial video 

identification, where we try to distinguish between real 3D facial objects in videos and 2D images of faces in a video frame 

sequence, and utilize this in biometric identification. We present a fast 2D Dual Discrete Wavelet Transform 2D-DWT based 

video magnification technique that detects micro movements by magnifying the phase differences between subsequent video 

frame's wavelet coefficients, at different sub bands. Next, in order to overcome shortcoming of 2D-DWT systems, 2D Dual 

Complex Wavelet Transform 2D-CWT has also been employed to estimate phase changes between subsequent video frames at 

different spatial locations of Complex Wavelets sub-bands. This latter presented CWT Technique uses the Radon Transform to 

detect any periodic motion in the video frames. Several simulation results are given to show that our proposed hybrid 

technique achieves comparable and sometimes superior performance with far less complexity when compared with recent 

literature in micro motion magnification, such as steerable pyramids STR and Riesz Transform RT based steerable pyramids 

RT-STR. Both DWT and CWT techniques are combined for 3D facial video identification. The attached videos demonstrate 

the superior video quality obtained by the proposed technique. 
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1. Introduction 

The human visual system has far less ability to recognize 

spatial and temporal variations, when compared with 

automated computations, of frame pixel values in different 

videos. This is due to the fact that the human visual system 

has small sensitivity with the spatio-temporal changes of 

video signals. These micro changes of frame pixels values, 

whether they are intensity changes (i.e. change in brightness, 

change in colorings) or spatial changes (i.e. micro movement 

of video objects), may be invisible for the human eye. 

However, they reveal useful information. Hence, there is an 

impending need for novel techniques to exploit these changes 

to extract some valuable information in different engineering, 

nanotechnology and medical applications. Magnifying micro 

movements in natural videos has been investigated by several 

researchers in the past decade. This is due to the fact that it 

reveals useful information to recognize little spatial and 

temporal variations of frame pixel values that are useful in 

numerous applications [1-5]. 

In video micro motion magnification we mainly analyze 

over time frames of videos at different pixel locations for 

many frequency values and magnify any changes of pixel 

values (which would indicate a micro motion) at any 

temporal position (frequency). 

This temporal manipulation operation can reduce the range 

of frequencies that can be magnified to reduce the impact of 

any type of noise may exist during the camera acquisition 

process. According to H. Wu et al. [6], an elegant technique 

was presented to magnify micro brightness and color changes 

using an Eulerian process. It achieved outstanding 

performance, but it was sensitive to noise that gets amplified 
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during the magnification operation. According to N. Wadha 

et al. [7], another superior technique was presented in micro 

motion magnification, that replied on the utilization of 

complex Gabor filters that constructed Laplacian pyramids. 

these pyramids are well known as steerable pyramids STR. 

Magnification of micro movements was achieved by 

changing the phase of complex coefficients of the Gabor 

filters. Performance was outstanding but it was 

computationally expensive. 

According to N. Wadha et al. [8], Riesz Transform RT 

based steerable pyramids, RT-STR, the RT was presented in 

phase magnification of the Laplacian pyramids presented in 

[7], for the same purpose of magnifying micro motion in 

videos. This was performed by projecting each video frame 

orthogonally in spatial domain, hence much computations 

were saved by avoiding complex Laplacian pyramids. More 

details about a quaternion representation that was utilized to 

determine the RT-STR phase values [9]. 

CWT was first introduced as a domain for phase 

magnification in video micro movement magnification [10-

11]. This is due to the fact that CWT utilizes orthogonal real 

filters to construct analytic signals. CWT filters are also shift 

invariant and oriented in spatial domain. In the CWT domain, 

every video frame is decomposed into sub-bands. Then, the 

phase difference between these sub-bands coefficients of 

each frame and a reference frame, is multiplied by an 

amplification factor to get new modified real and imaginary 

CWT coefficients. These modified CWT wavelet coefficients 

are used to reconstruct the new updated video frame. 

Recognizing 3D facial objects in biometric identification 

videos has been received much interest in recent security 

identification applications. It aims at distinguishing 3D facial 

objects in videos from 2D Facial frame sequence videos (2D 

face image video sequences), Figure 3(d). It is highly 

influential in security identification application, where the 

goal is to determine that the human face subject that is posing 

in front of a camera is a live object, rather than a printed face 

image that is presented in front of an authentication camera 

for the purpose of unauthorized access [12]. In this paper we 

utilized both DWT and CWT to detect 3D facial videos and 

identify them from 2D image sequences as well be shown in 

section 5. 

In this paper we first present a fast DWT based video 

magnification technique. In this technique, the Approximate 

Reisz Transform of [8] is utilized to estimate the local phase 

difference between sub bands of wavelets decompositions of 

video frames for the purpose of fast micro movement 

magnification. This technique has been employed for 3D 

facial video recognition. Next, in order to overcome 

shortcomings of DWT systems, a CWT based technique is 

proposed. In this respect, a novel approach is proposed to 

accurately estimate the phase differences between wavelet 

sub band coefficients of subsequent frames of the video. 

This estimation is achieved by manipulating the real and 

imaginary values of rows and columns of wavelets matrices 

of this CWT analysis sub-bands. This manipulation aims at 

producing exact orthogonal wavelet matrices. Then, to 

calculate the orientation of every video frame, we proposed a 

gradient-based method. We finally for the determined 

orientation value, we select an appropriate value for phase 

amplification through the utilization of the Radon Transform. 

This Radon Transform is also utilized to detect periodic 

motions in any video frame. Simulation results of different 

videos, have revealed the superior quality of the micro 

motion magnified videos when compared with the existing 

approaches. Finally this CWT Radon Transform based 

technique has been employed for the recognition of 3D facial 

videos when compared with basic 2D facial image videos. 

The paper is organized as follows: section II, briefly 

summarizes different micro movement techniques presented 

in recent literature such as STR and RT. Section III presents 

DWT based video micro motion magnification. We employed 

it for 3D facial identification for fast recognition. Section IV 

presents our novel techniques of accurate phase estimation, 

orientation calculation and phase gain estimation. We also 

utilized this approach to detect blood circulation in facial 

tissues of facial objects in 3D facial identification. A detailed 

simulation comparison between the proposed technique on 

CWT and DWT as well as the successful recent literature 

approaches STR and RT-STR is illustrated in section V. 

Section V also includes our simulation results with 3D face 

identification experiments and its recognition from 2D image 

sequences. Conclusion is in section VI. 

2. Background 

Steerable pyramids [13] are well known of being easy to 

rotate in in polar domain for their frequency bands at any 

arbitrary orientation. This feature made them achieve 

superior performance in video micro movement 

magnification. But as a drawback, they require high 

computational complexity in addition to the fact that they are 

shift variant. In order to speed up computations with 

Steerable pyramids; a new image pyramid representation, the 

Riesz Transform RT pyramid was proposed [8, 9]. The Riesz 

Transform RT avoids computing the 2-D Hilbert Transform 

video frames in frequency domain as in steerable pyramids. It 

amounts to constructing approximate orthogonal projections 

of the frame sub band I, along the horizontal and vertical 

directions, namely Rx, Ry. This triple � �, �� , ��� determines 

a spherical form as 	
, �, �
. 
 = ��� + ��� + ��� � =
cos �,  �  defines the local phase of this subband. This 

constitutes the basic step in constructing the Riesz pyramid-

based video micro movement magnification process. It is 

based upon decomposing each video frame into multiple sub-

bands, each of which corresponds to a different spatial scale. 

Then, we calculate the Riesz transform of each sub-band. The 

local phase shifts ��  of these subbands are updated as 

�� = �� + � ∗ ��� − ��
, ��  is the local phase of a 

reference frame at the same spatial location and scale. K is 

the phase magnification factor. In order to speed up phase 

update, the quaternion technique is used [9]. Figure 1 shows 

a block diagram of our DWT based proposed technique. An 

abbreviated version of this work was presented in [14, 15], 

but with much less details and experiments setup and results 
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Figure 1. Block diagram of the fast DWT based algorithm. 

3. DWT Based Video Magnification 

The proposed DWT and CWT-based techniques for micro 

movement magnification [10, 11], is based on the following 

observation. Given a reference video frame ����, �
 at time t 

and another arbitrary frame ���, �
 that is delayed from the 

reference frame by ∆!, i.e. ���, �
 " ���� � #$∆!, � � #�∆!
 

at time ! � ∆!, and using the 2-D DFT, we have 

���, �
 � ∑ ∑ &�Ω$, Ω�
()�Ω*�+Ω,�
   ,  
����, �
 � ∑ ∑ &��Ω$, Ω�
()�Ω*�+Ω,� 
     

���� � #$∆!, � � #�∆!
 � ∑ ∑ �&��Ω$, Ω�
()�-*Ω*+-,Ω,
./�()�Ω*�+Ω,�
                                           (1) 

&�Ω$, Ω�
 ; &��Ω$, Ω�
  are the 2D-DFT of the oriented 

band pass functions of the decomposed sub-bands of the 

respective video frames. Thus, under constant illumination 

conditions, &�Ω$, Ω�
; &��Ω$, Ω�
  differ only by a constant 

phase. This means that changing the phase difference 

between respective sub bands by a constant amount, is 

equivalent to shifting these frames in time. 

Now, in order to perform video micro movement 

magnification using DWT systems, we calculate the local 

Riesz basis for each DWT subband, then the local phase of 

every sub bands can now be determined. We note here that 

DWT provides real coefficients, but after this Riesz post 

processing the coefficients becomes complex and phase can 

be calculated. The DWT video micro movement technique 

can be designed as follows: 

1. Decompose every frame of the video stream into n 

subbands, using the assigned DWT family. 

2. For every sub-band, compute wavelet 

coefficient01,2, 3 � 1,2, … . , 7; 9 � 1,2,3. Construct for 

each sub band, the Riesz basis ��,12  and ��,12 . This 

triple 01,2 , ��,12 , ��,12  defines the local amplitude A, 

local phase �  and local orientation �  of the spectral 

representation (A;  � ; � ), where 01,2 � 
 ;<=� , 

��,12 � 
 =>7� and ��,12 � 
 =>7 � =>7�. 

3. To compute the phase difference between the current 

frame wavelet ( 012� � >��,12� � ?��,12� ) and its 

preceding one (012
@ � >��,12

@ � ?��,12
@

). We invoke the 

quaternion technique. This means that the quaternion 

phase difference is simply 

A012� � >��,12� � ?��,12� B � A012
@ � >��,12

@ � ?��,12
@ B � CD � >C$ � ?C�                                        (2) 

Thus, the quaternion local phase difference ∆� � ;<=E$ FGHIJK , �/ � ��CD� � C$� � C��. Similarly, its orientation � � ;<=E$� �*
L�*,+�,,


. 

4. To perform phase magnification by a factor K; i.e ∆�M=�∆�, the new wavelets 012�  are obtained as follows: 

012� � 
cos�� � ∆�M
 � 
cos�∆�M
;<=� � 
 =>7�∆�M
=>7�                                          (3) 

012� � 
cos�∆�M
012� � =>7�∆�M
 F��,12 cos��
 �  ��,12=>7��
K                                       (4) 

and all these quantities are already obtained. 

DWT has been employed for 3D human face recognition 

(identification), as a fast online tool as will be shown in the 

simulations section. It is meant to be used as a pre-step 

before applying our next more hybrid technique of CWT 

based micro motion magnification with its gradient based 

phase direction estimation and Radon Transform based phase 

gain estimation components. We note here that this DWT 

Riesz based technique provides orthogonal projection for the 

DWT subband coefficients, hence an accurate fast local 

phase can be determined for these coefficients, otherwise no 

phase information would have been possible to obtain for the 

original DWT real subbands. At this point, it is worth 

mentioning that DWT suffers from ringing artifact at edges 

of the produced images. It can be viewed as a singularity 

moving around in space [16]. To overcome this problem, it is 

proposed to use CWT based magnification, Figure 2. 
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Figure 2. Block diagram of the CWT based algorithm for micro movement magnification. 

4. The Proposed CWT-Based Video 

Magnification Technique 

The one dimensional dual tree complex wavelet (1D 

DTCWT) transform is realized as two DWT real trees in 

parallel. These two transform trees must be orthogonal or 

biorthogonal to each other. We can construct this 1D DT-

CWT with a pair of lowpass Hilbert pair filters (NDM , ND2) for 

the upper and lower DWT trees that ensures Hilbert relations. 

Hence, the wavelet coefficients at any decomposing level of 

the upper and lower trees would constitute Hilbert pair. In 

order to satisfy Hilbert relations, we select the first stage 

filter ND$�7
, and the succeeding stages filters ND��7
 of the 

upper and lower trees to follow these relations 

ND,2$ �7
 � ND,M$ �7 � 1
                          (5) 

ND,2
) �7
 � ND,M

) �7 � 0.5
, ? � 2,3, … . , C 

where r is the number of decomposition levels. The synthesis 

filter set pairs QDM$ , QD2$ , QDM� , QD2�  determined as a consequence 

of the wavelet orthogonality conditions, obey similar 

relations. This means that we have 4 sets of filters for 2 

stages NDM$ , ND2$ , NDM� , ND2� , QDM$ , QD2$ , QDM� , QD2� . This would 

construct critically sampled wavelet. This dual-tree complex 

wavelet, is nearly shift-invariant and is oriented in spatial 

domain, as it produces six sub bands at each scale, each is 

oriented at distinct direction. 

In order to construct the two dimensional dual-tree 2D DT-

CWT we follow the same structure in the regular 2D DWT, 

but we utilize two wavelets in each sub band. This real 2-D 

dual-tree wavelet is implemented using two critically 

sampled 2-D DWTs in parallel [17–19]. We construct these 

wavelets by processing 2-D dual DWT sub-bands through its 

columns and rows with filters of Eq. (5). We take four 

different combination as 

R�ND$, ND$
, �ND$, ND�
, �ND�, ND$
, �ND�, ND�
S  
where ND � NDM represents the upper tree and h0d represents the 

lower tree. We now select the upper and lower trees and then 

calculate the sum and difference images of the subbands of these 

two trees. These sum and difference images represents the 

wavelets for each sub band of the two trees. The sum image 

wavelet can represent the real part of a complex structure, while 

the other image (difference image) can represent the imaginary 

part. Hence, CWT would generate six oriented sub bands, all 

nearly shift invariant, at each scale for each tree. 

 

Figure 3. (a), (b), and (c). The phase between real and imaginary wavelets of the CWT decomposition LH, HL, HH sub bands of the 1st sub band of the upper 

tree for 256_256 Cameraman image. (d) 3D object face in comparison with 2D snapshot images. 
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Thus, unlike the DWT based technique described in sec. (3), 

the CWT based micro motion magnification approach utilizes a 

real and imaginary tree to estimate the phase difference �T� �
�� � ��, where ��, �� are the phases of the current frame and 

reference frame, at every spatial location and scale of the CWT 

sub band. Then, we modify the current frame phase ��  to be 

�� � �, where K is the phase gain. The motion magnified CWT 

real and imaginary wavelets are reconstructed using the 

modified phases �� as described in [11]. The main disadvantage 

of this technique is the assumption of orthogonality of the 

columns of the real and imaginary wavelets of the CWT 

decomposition at every spatial location and scale. In fact, the 

phase angle between the columns of these two wavelets of a 

CWT system, is not 90. Hence, the estimated frame phase � is 

not always accurate and precise. Figure 3, verifies this feature 

for 256x256 Cameraman image, when decomposed using 10-tap 

orthogonal CWT filter, [10]. The figure illustrates the phase 

angles between the columns of the real and imaginary wavelets 

of the 1
st
 sub band of the upper tree, for the LH; HL and HH sub 

bands. In this paper we propose to accurately estimate the local 

phase ��  as will be presented in next section, this would 

enhance the micro movement magnification performance. We 

consider this; the main novelty of this work, Figure 2 shows a 

block diagram of this proposed part. 

A. Exact Quadrature Real and Imaginary Wavelets CWTs 

For any coefficient 

For any coefficient with a specific spatial location and 

scale, we specify the real wavelet by UV)  and imaginary 

wavelet by WV)  where 

X> � 1 YZZ(C !C((
= 2 [<\(C !C(( ] 

? = 1,2,3 �<C [^, ^[ _79 ^^ =`aa_79=} 

So, to accurately estimate the local phase �� , we do the 

following steps: 

Compute c = UV)/  WV) , d = UV)/  UV) . Construct a diagonal 

matrix Z with diagonal elements e11 = 2	ff}
�	ff}

 where 9	11}, ;	11} 
are diagonal elements of the matrices D and C, respectively. 

Modify the imaginary wavelets 

WV)g = �h  AWV) − UV)iB                          (6) 

�h is a scaling matrix that makes the length of every vector 

of WV)� the same as its corresponding of WV) . 

Hence, the local phase is exactly estimated by 

�� = !_7E$ jklmn

olm
p                               (7) 

where WV)g  is the updated/imaginary wavelet. We note here 

that even though the perfect reconstruction property PR of 

CWT is modified, but it will have minor (if any) impact on 

image and video quality. Table 1, shows this minor effect on 

image and video quality when implemented using CWT with 

different decomposition levels. We also note that this CWT 

subband modification for Exact quadrature wavelets would 

result in over-complete (almost) wavelet representation. This 

representation is robust against noise and appropriate for all 

shift invariant video motion applications that can resist 

regular motion artifacts in video coding [16]. 

Table 1. PSNR of video frames and images reconstructed without exact 

orthogonality. 

No. 

Levels 

Cameraman 

image. 

Baby video 

Frame 11 

Crane video 

Frame 11 

2 41.71 49.65 44.73 

3 39.1 47.17 39.32 

4 37.56 44.36 37.6 

5 35.73 41.3 36.86 

B. Phase Gain Estimation 

In phase gain K estimation we measure the displacement 

for each video frame. The Radon Transform [20, 21], can 

best detect any minor change in images and video frames. 

The Radon Transform of a 2-D image ��!$, !�
 is defined as 

���q, �
 = r ��!$, !�
s�!$ cos � + !� sin�� − q

9!$ 9!�
v

Ev   (8) 

Thus, ���q, �
  represents the projection of the image 

��!$, !�
  with a direction angle �  with axis !$ . q  is the 

distance from the image center to the projection line. The 

Radon Transform can then best detect any slight modification 

in a projected image. Figure 4, demonstrated this detection 

ability from two successive frames (frames 1 & 2) of the 

Baby video, in both the vertical and horizontal directions. 

The Radon Transform is noticeable horizontally and 

vertically, in spite of the fact that the norm difference is less 

than 0.3. Radon Transform can also determine periodic 

performance if exists. That is if ��!$, !�
 exhibit a periodic 

changes along any specific direction with angle �  with !$ , 

then ���q, �
 will still have the same periodicity. 

The Radon Transform is then used to measure our peak 

frame deviation. It is calculated with respect to the mean 

frame orientation. We then use the least squares estimation of 

the frames’ gradients at every image pixel, to compute the 

orientation of the video frame image ���, �
. It is listed as 

follows: 

Compute the gradients w� = xy��,�

xz

, w� = xy��,�

x{

 at each 

pixel ��, �
 of the image I. Then, the orientation at a specific 

pixel p is given by tan��@
 = x{
xz

. 

Denote the average frame orientation by �~ . Then �~  is 

determined as the least squares solution of the objective 

function �, where 

� = ∑ ∑ Fw� cos��~
 − w�  =>7��~
K�
               (9) 

Where summation extends over the support of I. 

Minimization yields the average orientation � to be 

�~ = $
�  tanE$ F∇{

∇z
K                                (10) 

∇�= ∑ ∑Aw�� − w��B  

∇�= 2 ∑ ∑Aw� − w�B  
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Figure 4. The deviation of the Radon Transform in both vertical and horizontal directions, for frames 1 & 2 of the Baby video. The difference in the radon 

transform is noticeable while the norm difference between these two frames is less than 0.3. 

Figure 5, illustrates the orientation of the first frame of the 

Baby and Crane videos. 

To calculate the phase gain K which would magnify 

motion displacement between any frame s and a reference 

frame r, we test the motion magnified frame using a certain 

phase gain value, K. We follow the next steps, 

1. Compute the motion magnified frame �h,g~��  as 

described in sec. (4.1), for each phase gain value. 

2. For each value of the phase gain vector, determine 

Δ� � �h � ��  and ��  are the orientation of the motion 

magnified �h,g~��  and the reference frames, respectively. 

Finally, calculate the horizontal Radon Transform along �h, 

then select its 1st peak to determine the magnification factor. 

Utilizing the Radon Transform in the estimation of phase 

gain for CWT (Complex Wavelet Transform) based micro 

motion magnification would eliminate the need for the user 

to identify a particular range of temporal or spatial 

frequencies to capture any motion in it, as has been adopted 

in recent literature [22, 7, 6]. The horizontal Radon 

Transform was specifically found to be more accurate in gain 

estimation rather than the vertical one, due to the fact that 

most micro motions (Capture device shacking) tends to be in 

the horizontal direction. Figure 6, shows the phase gain 

performance of both the Baby and Crane videos. The figure 

shows the Radon deviation performance agrees with the 

phase orientation behavior. The frame under investigation is 

the 45
th

 frame. The 1
st
 frame is taken as the reference frame. 

Three CWT decomposition levels are used. We choose the 

optimum phase gain to be the gain at the 1
st
 peak of the axial 

direction (orientation’s direction) Radon deviations. This 

makes the phase gain for the Baby video is 40 and 55 for the 

Crane video. Simulations have verified that the phase gain K 

is not sensitive to the choice of the test frame s. 

  

Figure 5. Orientation of the Crane and Baby videos, first frame is displayed. We calculated frames gradients with least square minimization for every pixel. 
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Figure 6. The phase gain performance of Baby and Crane videos for the 45th frame. 3 CWT decomposition levels are used. The optimum phase gain is the gain 

at the 1st peak of the horizontal Radon deviations. It results in phase gain for the Baby video is 40 and 55 for the Crane video. 

5. Simulation Results 

In this section, we implement both DWT and CWT 

techniques to magnify the micro movement between video 

frames. In the DWT technique, the wavelet family used 

is ’bior 2.4’. The number of decomposition levels is 3. Each 

sub band is processed by 3x3 Approximate Riesz Transform 

as described in sec. (3) to get the updated wavelet coefficient 

and subsequently the magnified video frame. The proposed 

modified CWT-based micro movement video magnification 

technique is implemented as follows: 

1) Decompose every frame of the current video, into n 

levels CWT system. 

2) Compute the real and imaginary wavelets UV,) and WV,) , 

> � 1,2 and ? � 1,2,3 for the 3 sub bands of each scale 

of the lower and upper trees at every scale and spatial 

location. Update WV,) to WV,)g  as described by Eq. (6), 

calculate their modulus �V,) � LUV,)� � WV,)g
,
 

3) Evaluate the current sub band phase �� � !_7 jkl,mn
ol,m

p as 

well as the phase angle �� of a reference sub band at the 

same spatial location and scale. 

4) Modify ��  to ��g � �� � � �T , only if |�T| � s � . 

Otherwise let ��g � ��. In this paper, we only calculate 

s� if the pdf histogram of the CWT phase coefficients 

is below 10% of the maximum value. 

5) Update the real and imaginary CWT, (and 2D DWT) 

coefficients of the magnified frame as 

UV)g � �V);<=���g
                            (11) 

WV)g � �V)  =>7A�V)gB 

6) Reconstruct the magnified frame using the updated 

wavelets in conjunction with the Inverse CWT 

algorithm, [17, 18]. 

We performed our simulation results only on the Baby and 

Crane videos to compare performance with standard 

literature results. Each video frame with the CWT technique 

is decomposed using a 3-level orthogonal CWT as in [17]. 

Frame 1 in both DWT and CWT techniques is the reference 

frame. We calculated a phase gain value of K=55 for the 

Crane video, and K=40 for the Baby video, sec. (4.2). The 

phase difference of each frame, is processed through a 

Butterworth filter. This band pass filter was 1
st
 1/150 and 

25/150 cutoff frequencies. The reconstructed motion 

magnified video qualities are compared with qualities of 

videos constructed using the complex steerable pyramid 

technique [7], and those constructed using Riesz Transform 

technique [8], and the proposed hybrid technique phase gain 

K. The quality is measured by SSIM (�g~�� , ���� ) where 

�g~��  is the motion magnified image, and ����  is the 

corresponding original one. Figure 7, shows this similarity. 

This verifies our claim that the proposed CWT technique 

achieves superior performance especially with the Crane 

video example. We achieved superior magnified motion for 

the Crane video that is free from any local vibration that was 

produced from current exiting literature techniques such as 

Riesz Transform and STR cases. 
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Figure 7. The similarity between the magnified and unmagnified frames using SSIM and PSNR, measures. (a) Baby video case. (b) Crane video case. It is 

shown that the proposed CWT technique, competes very well the STR pyramid and Riesz micro movements techniques. 

3D Facial Video Identification 

The proposed DWT based and CWT based techniques 

have been used for 3D human face identification. We aim at 

achieving clear distinction between real live 3D human facial 

videos and any 2D face image sequence videos, Figure 3(d). 

In our 3D human face object identification experiments, we 

captured several videos of 3D human face objects and its 

counter 2D face image video sequence. In our camera 

acquisition scenarios, we allowed the camera to vibrate 

horizontally within a limited rage (within 1 degree with 60 

cm distance). This camera vibration is to strengthen the 

difference between the 3D and 2D video objects. We note 

here that horizontally or vertically vibrating the acquisition 

camera, while the object face is fixed, is similar to capturing 

a micro vibrating face while the camera is fixed, Figure 8. 

Also to simulate fake identification scenarios, we took facial 

videos of 2D images that are micro shacking with a similar 

frequency, just to distinguish between videos of real live 3D 

face objects that are naturally micro motioned, and videos of 

2D facial snapshots that are intentionally micro moved to 

seem real. We applied our first DWT based technique on 

three different face videos, of the same subject, as a tool for 

fast recognition based on micro motion magnification. These 

3 different micro motion face videos consisted of a real live 

3D face video with natural micro motion, a video of 2D 

snapshot face images, fixed location, and a video of 2D 

snapshot face images with micro image shacking as 

described before. We then applied our hybrid CWT based 

technique for video micro motion magnification on these 

three videos. We detected clear difference in performance, of 

detecting live human tissues motion, between 3D live human 

face videos and 2D face image video sequences. This 

experiment was repeated on videos for 5 different subjects, 3 

videos for each subject as described above, same clear 

distinction was achieved for all subjects. In order to 

demonstrate the micro movement magnification on videos in 

this manuscript we take the line in the middle of the subject 

face, Figure 9(d), and time graph it for all video sequence 

frames. It can then be displayed as in Figure 9 (a,b,c) as line 

motion with respect to frame number. We can then take a 

horizontal slice of Figure 9 (a,b,c) to display the micro 

motion/vibration of a specified pixel across all frames, as in 

Figure 8. Our proposed DWT and CWT based techniques of 

micro motion magnification can clearly distinguish between 

3D live facial videos with their live tissues micro motion and 

2D rigid facial image videos, as in Figure 8, with more 

enhanced performance with the CWT based technique (170 

simulation time for CWT on average compared to 23 sec for 

DWT). Figure 8 shows a cross section of the time line motion 

of the face middle line video in Figure 9(d). In Figure 8, the 

solid fixed line shows a specific pixel for this face middle 

line for a 2D facial snapshot video without any magnification 

or manipulation. It is normal to expect it in a fixed position. 

The dotted blue line (shacking), which is close to the fixed 

line, shows this same pixel in the middle line for a video of a 

2D snapshot image with camera shacking as mentioned 

above. Also in Figure 8, the star (asterick) line shows this 

same middle line for a 3D facial video after DWT 

magnification of micro movement. Finally also in Figure 8, 

the solid black line with a significant motion represents this 

same pixel for the face middle line for a 3D facial video after 

CWT magnification of micro movement. Figure 9 shows a 

comparison of a middle line face video between a fake 2D 

image face video (Figure 9,a) and a real live 3D facial video 

(with both DWT and CWT magnifications, Figure 9 b,c). The 

graph in Figure 9 (a), (b) and (c) displays the face middle line 

across 260 frames for each of the videos described here. 

Figure 9(a) shows this face time-line for basic 3D face video 

without any magnification or manipulation. Figure 9(b) 

shows this same figure after DWT micro movement 

magnification, sec 3. Figure 9(c) shows this same figure after 

CWT magnification, sec 4. Clear distinction was found for 

all videos for this middle face line, Figure 9 (b) and (c). This 

time line deviation of Figure 9 is our method of measuring 

the magnification factor. Table 2 shows this clear distinction 

for another 4 different subjects, where the standard deviation 

is listed for each graph for each subject. 
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Figure 8. Detection time line pixel motion across all frames. This correlates well with periodic tissues movement in 3D facial videos. (a) Without motion 

magnification with natural camera vibration/motion (b) after DWTmotion magnification (c) Without magnification or camera movement (d) after CWT 

magnification. 

 

Figure 9. An Example of time line motion across all frames for a middle face video line. This is performed between a 3D live facial video and a 2D image 

sequence fake video, (a) Without motion magnification with fixed camera motion (b) after DWT magnification (c) after CWT magnification (d). 

Table 2. Distinction of Live periodic micro motion for 3D facial videos. 

Subject no. 2D Still image Video 3D facial video after DWT magnification 3D facial video after CWT magnification 

2 0.023 0.036 0.069 

3 0.023 0.039 0.072 

4 0.022 0.035 0.067 

5 0.021 0.042 0.077 

 

We note here that the micro movement magnified in Facial 

videos, are mainly due to the live periodic blood circulation, 

this live periodic motion should be consistent with heart beep 

rate that can be detected from subjects with more 

sophisticated medical equipment. It is also normal to have 

zero movement with 2D snapshot image video sequences 

with or without camera shacking. In, [6], research has been 

conducted with magnification of micro changes of videos but 

with brightness changes, unlike our own technique direction 

which focuses on magnifying micro movements similar to 

most recent literature, [4, 5, 7]. It is our belief that the 

combination of both direction could lead to significant 

detection of live skin objects. 

6. Conclusion 

This paper first describes a fast DWT based micro 

movement magnification technique for online 3D facial video 

identification from fake 2D facial image videos. We then 

present a CWT based technique for video micro movement 

magnification that is based on an orientation gradient and a 

Radon Transform based CWT technique to detect live periodic 
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motion of live facial tissues in 3D facial object identification. 

Our proposed techniques in both DWT and CWT approaches 

achieves superior performance with micro motion magnified 

videos, when compared to existing literature results. Our 

proposed CWT system identifies regions with largest motion 

because of the CWT orientation features with high precision. 

Further, applying Radon Transform of the magnified video 

frames enables us to measure biomedical and identification 

features just from the videos. This work has been supported 

mainly from Alexander Von Humboldt foundation, Germany. 
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